Geometric Modeling

Assignment sheet \#11
"Splines \& Differential Geometry"
(due July 17th 2012 before the lecture)
Silke Jansen, Ruxandra Lasowski, Art Tevs, Michael Wand

Exercise 1 (De Casteljau Algorithm for Bézier Triangles):

A quadratic Bézier triangle is given by the control points

$$
\begin{aligned}
& F(a, a)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad F(a, b)=\left(\begin{array}{l}
2 \\
2 \\
4
\end{array}\right) \quad F(a, c)=\left(\begin{array}{l}
4 \\
-2 \\
6
\end{array}\right) \\
& F(b, b)=\left(\begin{array}{l}
4 \\
4 \\
0
\end{array}\right) \quad F(b, c)=\left(\begin{array}{l}
8 \\
0 \\
4
\end{array}\right) \quad F(c, c)=\left(\begin{array}{l}
6 \\
-4 \\
4
\end{array}\right)
\end{aligned}
$$

at parameter positions $a=(0,0), b=(1,0), c=(0.5,1)$.

Which of the parameter pairs $p_{1}=(0.25,0.5), p_{2}=(0.3,0.75), p_{3}=(0.5,0.5)$ is outside the triangle? For the other parameter pairs p, evaluate the surface $F(p, p)$ using the De Casteljau Algorithm for Bézier triangles.

Exercise 2 (Chaikin's Corner Cutting):

Consider a closed control polygon. Chaikin's algorithm can be formulated as subdividing each linear segment 1:2:1 and using the arising points as the control points of the refined control polygon:

Show that the limit curve is a C1-continuous, piecewise quadratic Bézier curve.

Hint: Remember the De Casteljau algorithm.

Exercise 3 (Intrinsic Mapping):
[2+1 points]
Consider the mapping function $f(u, v)=\left[\begin{array}{l}u \cos (v) \\ u \sin (v) \\ v\end{array}\right]$ from a 2D domain to a surface.
a. Find the angle between two intersecting curves $u+v=0$ and $u-v=0$ on the surface.
b. What kind of mapping function does $f(u, v)$ belong to (conformal, equiareal, isometric)?

Exercise 4 (Euler Curvature Formula):

Let $k_{n}(\varphi)=k_{\text {max }} \cos ^{2}(\varphi)+k_{\min } \sin ^{2}(\varphi)$ be the curvature associated with the angle between the current tangent and the tangent of the maximal principal curvature.

Proof that the mean curvature is actually the mean curvature:

$$
H=\frac{1}{2 \pi} \int_{0}^{2 \pi} k_{n}(\varphi) d \varphi
$$

i.e.: The mean of all directional curvatures is the mean of the principal curvatures $\left(k_{\max }+k_{\min }\right) / 2$.

Exercise 5 (Ruled and Developable Surfaces):

[$2+2+3$ points]
Definition: Ruled surface

A ruled surface can be described (at least locally) as the set of points swept by a moving straight line.

Let $p(t)$ be a given space curve and $a(t)$ be a unit vector of the sweeping line. Then the ruled surface $r(u, v)$ is given as :

$$
r(u, v)=p(u)+v a(u) \quad\|a(u)\|=1
$$

The Gaussian curvature on a ruled surface is ≤ 0 everywhere.
a. Is the surface given by $z=x y+3$ a ruled surface? Justify your answer.
b. Present a surface which is a ruled surface and a surface of revolution at the same time. Justify your answer.
c. Given a space curve $r(s)$ parameterized by its arc-length s, consider a surface generated by all the tangents to the curve. Is it a developable surface? Justify your answer.

Hint: Write down the surface equation as a ruled surface and determine the Gaussian curvature using fundamental forms.

The following exercises are optional. Points obtained will be added to the overall assignment score.

Bonus Exercise 1 (Why Blossoms are symmetric):

Consider a de Casteljau scheme as shown in the figure above. Prove that the following two operations yield the same result:

1. Affine interpolation between \mathbf{a} and \mathbf{b} with ratios $s,(1-s)$ to get " $\mathbf{p}[0, s]$ " and between \mathbf{b}, \mathbf{c} with ratios $s,(1-s)$ to get " $p[1, s]$ ". Then interpolate again between the resulting points with ratios $\mathrm{t},(1-t)$ to obtain the point " $\mathrm{p}[s, t]$ ".
2. Affine interpolation between \mathbf{a} and \mathbf{b} with ratios $t,(1-t)$ to get " $p[0, t]$ " and between \mathbf{b}, \mathbf{c} with ratios $t,(1-t)$ to get " $p[1, t]$ ". Then interpolate again between the resulting points with ratios $s,(1-s)$ to obtain the point " $p[t, s]$ ".

In other words, show that the points we have labeled $p[s, t]$ and $p[t, s]$ are identical. Use only the properties of affine interpolation between points in \mathbb{R}^{n} (we do not yet know that this corresponds to Blossoms). This result is known as Menelaos' theorem.

Bonus Exercise 2 (Fundamental Forms and Curvature):

a. Find the coefficients of the second fundamental form of the surface

$$
r(u, v)=\left(\begin{array}{c}
\cos v-u \sin v \\
\sin v+u \cos v \\
u+v
\end{array}\right)
$$

b. Find the Gaussian curvature of the surface

$$
r(u, v)=\left(\begin{array}{c}
-u \\
2 \sin v \\
2 \cos v
\end{array}\right)
$$

Bonus Exercise 3 (Principle Curvatures):

Show that the principal curvatures of the surface $r(u, v)=\left[\begin{array}{l}u \cos (v) \\ u \sin (v) \\ e^{v}\end{array}\right]$ have opposite signs.

